
Int J Theor Phys (2009) 48: 3383–3395
DOI 10.1007/s10773-009-0143-6

Quantum Algorithms Know in Advance 50%
of the Solution They Will Find in the Future

Giuseppe Castagnoli

Received: 12 July 2009 / Accepted: 7 September 2009 / Published online: 22 September 2009
© Springer Science+Business Media, LLC 2009

Abstract Quantum algorithms require less operations than classical algorithms. The exact
reason of this has not been pinpointed until now. Our explanation is that quantum algo-
rithms know in advance 50% of the solution of the problem they will find in the future. In
fact they can be represented as the sum of all the possible histories of a respective “advanced
information classical algorithm”. This algorithm, given the advanced information (50% of
the bits encoding the problem solution), performs the operations (oracle’s queries) still re-
quired to identify the solution. Each history corresponds to a possible way of getting the
advanced information and a possible result of computing the missing information. This ex-
planation of the quantum speed up has an immediate practical consequence: the speed up
comes from comparing two classical algorithms, with and without advanced information,
with no physics involved. This simplification could open the way to a systematic explo-
ration of the possibilities of speed up.

Keywords Quantum computation · Quantum algorithm · Quantum speed up · Quantum
entanglement · Quantum measurement

1 Introduction

By integrating a set of notions developed in the series of articles [2–4], and [5], we provide
a simple and self contained explanation of the quantum speed up.

This should answer an existing need: Gross et al. assert that the exact “reason” of the
quantum speed up was never pinpointed, [9], (2009). Grover, with reference to a search in
a database of size N , writes: “What is the reason that one would expect that a quantum
mechanical scheme could accomplish the search in O(

√
N) steps? It would be insightful to

have a simple two line argument for this without having to describe the details of the search
algorithm”, [11], (2001).

G. Castagnoli (�)
Pieve Ligure, Genoa, Italy
e-mail: giuseppe.castagnoli@gmail.com

mailto:giuseppe.castagnoli@gmail.com

3384 Int J Theor Phys (2009) 48: 3383–3395

The explanation set forth in this article, in two lines, is: quantum algorithms require a
lower number of operations because they know in advance 50% of the information about the
solution of the problem they will find in the future. The peculiar character of this explanation
has to do with the non-sequential behavior of the wave function, already highlighted by
Dolev and Elitzur in special interaction free measurement situations [8]. Here we show that
this non-sequentiality is the crux of the quantum speed up.

In the sequel, quantum problem solving is seen as a game between two players: the oracle
and the quantum algorithm. The oracle chooses a function out of a set of functions known
to both players and gives to the second player the black box for its computation. The second
player should find out a certain property of the function through function evaluation (oracle’s
query).

We show that a quantum algorithm: (i) requires the number of function evaluations of
a classical algorithm that knows in advance 50% of the information about solution of the
problem and correspondingly (ii) can be represented as the sum of all the possible histories
of this classical algorithm—each history corresponds to a possible way of getting the ad-
vanced information and a possible result of computing the missing information. Thus the
speed up comes from comparing two classical algorithms, with and without advanced in-
formation. This brings the characterization of the problems liable of being solved with a
quantum speed up to an entirely classical framework.

2 Advanced Knowledge

We derive the 50% rule—point (i) of the introduction—in a simple instance of Grover’s data
base search algorithm [10].

The oracle chooses a data base location—an n bit string k ≡ k0, k1, . . . , kn−1 ∈ {0,1}n

(hides a ball in drawer number k)—and gives to the second player the black box that com-
putes the Kronecker function δ(k, x). The second player has to find the value of k (the num-
ber of the drawer the ball is in) by computing δ(k, x) for different values of x (by opening
different drawers). We also say: “by evaluating the function δ(k, x)”.

The key step of our approach is representing together the production of the problem on
the part of the oracle and the production of the solution on the part of the algorithm. We
ideally add to the usual quantum registers X (containing the argument of the function to
query the black box with) and V (hosting the result of function evaluation, mod 2 added to
its former content for logical reversibility) an auxiliary input register K containing k, the
data base location chosen by the oracle. The extended algorithm is: (0) prepare K in the
(even weighted) superposition of all the values of k, X in the superposition of all the values
of x, and V in the antisymmetric state, (1) perform function evaluation and mod 2 add the
result to the former content of V , and (2) apply the transformation U (see further below) to
register X.

With n = 2, the initial state is:

�0 = 1

4
√

2
(|00〉K +|01〉K +|10〉K +|11〉K)(|00〉X +|01〉X +|10〉X +|11〉X)(|0〉V −|1〉V).

(1)
The superposition in K can indifferently be incoherent, in which case |00〉K should be re-
placed by eiδ00 |00〉K , with δ00 a random variable with uniform distribution in [0,2π], etc.

Int J Theor Phys (2009) 48: 3383–3395 3385

One function evaluation yields:

�1 = 1

4
√

2

⎡
⎢⎢⎣

|00〉K(−|00〉X + |01〉X + |10〉X + |11〉X)

+ |01〉K(|00〉X − |01〉X + |10〉X + |11〉X)

+ |10〉K(|00〉X + |01〉X − |10〉X + |11〉X)

+ |11〉K(|00〉X + |01〉X + |10〉X − |11〉X)

⎤
⎥⎥⎦ (|0〉V − |1〉V), (2)

namely four orthogonal states of K , each a value of k, correlated with four orthogonal states
of X, which means that the information about the value of k has propagated to register X.
A rotation of the measurement basis of X makes this information readable. One applies
to X: (i) Hadamard transform, (ii) the transformation obtained by computing δ(0, x), and
(iii) another time Hadamard transform (in the overall, the transformation U). This yields:

�2 = 1

2
√

2
(|00〉K |00〉X + |01〉K |01〉X + |10〉K |10〉X + |11〉K |11〉X)(|0〉V − |1〉V), (3)

an entangled state where each value of k (in K) is correlated with the corresponding solution
found by the second player: the same value of k in X.

We denote by [K] and [X] the contents of K and X. Measurement of [K] and [X] in (3)
determines the moves of both players: the oracle’s choice (the value of k) and the solution
provided by the second player. Note that the state reduction induced by measuring [K],
backdated to before running the algorithm, yields the original Grover’s algorithm.

We discuss the behavior of the state vector. We see the nondeterministic production of the
contents of the two registers, due to measuring [K] and [X] in (3), as mutual determination
between such contents, like between two polarizations measured in an entangled polariza-
tion state (mutual determination, or mutual causality, is between bits of information). The
precise meaning of “mutual” is specified by the following use of the term (see also [2–4]):

We cannot say that reading the content of K (i.e. the outcome of measuring [K]) at
the end of the algorithm causes the content of X (the outcome of measuring [X]), namely
that choosing the drawer number (a value of k) to hide the ball in on the part of the oracle
determines the drawer number the ball is found in by the second player—this is the classical
perspective with no mutual determination.

For the same reason we cannot say that reading the content of X at the end of the al-
gorithm causes the content of K , namely that reading the drawer number at the end of the
algorithm, on the part of the second player, determines the drawer number chosen by the
oracle, namely creates the ball in the drawer with that number.

In consonance with time-symmetric quantum theory, we assume that mutual causality
is symmetrical [2]. Thus, the content of the two registers is determined by reading the first
(second) bit of register K and the second (first) bit of register X. In this perspective, one
bit of the data base location is created by the oracle (by the action of measuring either bit
of K), the other bit by the action of reading, at the end of the algorithm and on the part of
the second player, the other bit of the data base location in register X (i.e. by the action of
measuring the other bit of X). It is important to notice that this other bit is the ball created in
that bit. Thus, the second player (the quantum algorithm) has to search only the bit created
by the oracle, which explains the speed up of Grover’s algorithm for n = 2.

Mutual causality is, in a different perspective, mutual knowledge, or advanced knowledge
(in the polarization example, the two outcomes of measurement would “know each other”).
We should think of backdating to before running the algorithm the reduction induced by
measuring [K]. To the second player (to the algorithm), this is indistinguishable from hav-
ing a [K] measured before running the algorithm—see (1) through (3)—thus to having a

3386 Int J Theor Phys (2009) 48: 3383–3395

predetermined k. Now the second player, by measuring [X] at the end of the algorithm,
does not “create” any bit of information, he just “finds” the two measurement outcomes
created by the oracle. Mutual causality between the two bits becomes the second player
knowing in advance, before running the algorithm, either one of the two bits that he will
read at the end of the algorithm. In other words, the algorithm knows in advance, before
running, 50% of the information about the solution it will produce at the end of the run.

Either form of mutual causality explains the structure of the quantum algorithm: the
quantum algorithm can be represented as the sum of all the possible histories of a classical
algorithm that, knowing in advance 50% of the information about the solution of the prob-
lem, performs the function evaluations still required to identify the solution. As clarified in
the sequel, each history corresponds to a possible way of getting the advanced information
and a possible result of computing the missing information.

We should make a specification. In Grover’s algorithm, the outcomes of measuring [K]
and [X] in (3) are identical. The advanced information is indifferently 50% of the content
of either register. This is not always the case in quantum algorithms, therefore we define
the advanced information, in relation to the measurement outcomes, in a more general way.
Since the content of X is a function of the content of K (the solution is a function of the
problem), the information contained in X is redundant. Thus, the information encoding the
solution of the problem is all contained in register K , namely in the bit string k. There is
advanced knowledge of any half of k.

In the following, for each one of the main quantum algorithms, we: (i) provide the ex-
tended representation, (ii) pinpoint the half k’s representing advanced knowledge, (iii) check
the 50% rule, (iv) show that the quantum algorithm can be represented as the sum of the his-
tories of the related advanced information classical algorithm (each history, given a half k,
performs the function evaluations—if any—still required to identify the solution), and also
(v) try to rebuild the quantum algorithm out of the advanced information classical algo-
rithm using no a priori knowledge of the quantum algorithm. This part of the work contains
a summary of [5]. However, in [5] we gave the 50% rule mostly as a pattern common to
the main quantum algorithms. Now, algorithm by algorithm, we gear the 50% rule with the
above explanation of the quantum speed up; moreover we further develop the methodology
for building the quantum algorithm out of the advanced information classical algorithm.

3 Deutsch’s Algorithm

The set of functions is fk : {0,1} → {0,1}—table (4).

x f00(x) f01(x) f10(x) f11(x)

0 0 0 1 1
1 0 1 0 1

(4)

k ≡ k0, k1 is the table of the function (the sequence of function values ordered for increasing
values of the argument) and, clockwise rotated, the suffix of the function. The oracle chooses
at random one of these functions and gives to the second player the black box that, given x,
computes fk(x). The problem is finding whether the function is “balanced” (k = 01,10) or
constant. This requires two function evaluations in the classical case, just one in the quantum
case [6].

We ideally add to the usual registers a two qubit register K containing the oracle’s
choice k. Now the black box, given k and x, computes f (k, x) = fk(x).

Int J Theor Phys (2009) 48: 3383–3395 3387

The extended algorithm is: (0) prepare K in the superposition of all k, X in the super-
position of all x, and V in the antisymmetric state, (1) perform function evaluation, and (2)
apply Hadamard to register X:

�0 = 1

4
(|00〉K + |01〉K + |10〉K + |11〉K)(|0〉X + |1〉X)(|0〉V − |1〉V), (5)

�1 = 1

4
[(|00〉K − |11〉K)(|0〉X + |1〉X) + (|01〉K − |10〉K)(|0〉X − |1〉X)](|0〉V − |1〉V), (6)

�2 = 1

2
√

2
[(|00〉K − |11〉K)|0〉X + (|01〉K − |10〉K)|1〉X](|0〉V − |1〉V). (7)

Measuring [K] and [X] in (7) determines the moves of both players: the oracle’s choice
in register K and the solution found by the second player in register X: 0 if the function is
constant, 1 if balanced. Backdating to before running the algorithm the reduction induced
by measuring [K] gives the original Deutsch’s algorithm.

We check the 50% rule. The information acquired by measuring [K] in (7) is the two bits
read in K ([X] is redundant). There is advanced knowledge of any one of these two bits.
The quantum algorithm requires the number of function evaluations of a classical algorithm
that knows in advance either k0 = f (k,0) or k1 = f (k,1). To identify the character of the
function, this algorithm must acquire the other bit of information by computing, respectively,
either k1 = f (k,1) or k0 = f (k,0). Thus the advanced information classical algorithm has
to perform one function evaluation like the quantum algorithm, which verifies the 50% rule.

This rule shows that Deutsch’s problem is solvable with a quantum speed up indepen-
dently of our knowledge of the quantum algorithm. In fact the speed up comes from compar-
ing two classical algorithms, with and without the advanced information. The same applies
to all quantum algorithms.

We represent the quantum algorithm as the sum of the histories of the advanced infor-
mation classical algorithm. Table (8) gives the combinations of advanced information and
result of computing the missing information.

Advanced information Result of function evaluation

1 k0 = 0 k1 = f (k,1) = 0
2 k0 = 0 k1 = f (k,1) = 1
3 k0 = 1 k1 = f (k,1) = 0
4 k0 = 1 k1 = f (k,1) = 1
5 k1 = 0 k0 = f (k,0) = 0
6 k1 = 0 k0 = f (k,0) = 1
7 k1 = 1 k0 = f (k,0) = 0
8 k1 = 1 k0 = f (k,0) = 1

(8)

Each classical computation history is represented in quantum notation as a sequence of
sharp states:

• Row #1. Advanced information k0 = 0. The classical algorithm should compute k1 =
f (k,1) that, for this row, is k1 = 0. The quantum representation of the oracle’s choice
is thus |00〉K . To compute f (k,1), the initial state of the input register X must be |1〉X .
Since the result is mod 2 added to the initial content of register V , we should split row
#1 into: #1.1 with V initially in |0〉V and #1.2 with V initially in |1〉V . The initial state

3388 Int J Theor Phys (2009) 48: 3383–3395

of #1.1 is �
(1.1)

0 = |00〉K |1〉X|0〉V , that of #1.2 is �
(1.2)

0 = −|00〉K |1〉X|1〉V . Computation
histories have to be added and must be given an initial phase. We should set the initial
phases in such a way that, in the superposition of all histories, we obtain the initial state
of the quantum algorithm. This is what is needed to show that the quantum algorithm can
be represented as a sum of the histories of the advanced information classical algorithm.
The sum of the initial states of #1.1 and #1.2 is: �

(1)

0 = �
(1.1)

0 +�
(1.2)

0 = |00〉K |1〉X(|0〉V −
|1〉V). We normalize at the end. Function evaluation transforms �

(1)

0 into itself: �
(1)

1 =
�

(1)

0 (mod 2 adding f (00,1) = 0 to the former content of V leaves this content unaltered).
• Row #5. Advanced information k1 = 0, result of function evaluation k0 = 0. The same

rationale yields: �
(5)

0 = |00〉K |0〉X(|0〉V − |1〉V), �
(5)

1 = �
(5)

0 .
• The sum of #1 and #5 yields the transformation of |00〉K(|0〉X + |1〉X)(|0〉V − |1〉V) into

itself, i.e. the function evaluation stage of Deutsch’s algorithm when K is in |00〉K .
• Row #2. �

(2)

0 = |01〉K |1〉X(|0〉V −|1〉V), �
(2)

1 = −�
(2)

0 (mod 2 adding f (01,1) = 1 to the
former content of V swaps |0〉V and |1〉V – rotates by π the phase of the pair of histories).

• Row #7. �
(7)

0 = |01〉K |0〉X(|0〉V − |1〉V), �
(7)

1 = �
(7)

0 (mod 2 adding f (01,0) = 0 to the
former content of V leaves this content unaltered).

• The sum of #2 and #7 yields the transformation of |01〉K(|0〉X + |1〉X)(|0〉V − |1〉V) into
|01〉K(|0〉X −|1〉X)(|0〉V −|1〉V), namely the function evaluation stage of Deutsch’s algo-
rithm when K is in |01〉K .

• Proceeding in a similar way with the other histories, summing over, and normalizing
yields the transformation of �0 (5) into �1 (6).

In hindsight, there is a shortcut. For each |k〉K , we perform function evaluation not
only for the values of x required to identify the solution, also for the other values. I.e.,
we perform function evaluation for each product |k〉K(|0〉X + |1〉X)(|0〉V − |1〉V); junk his-
tories (for that |k〉K) do not harm, the important thing is performing function evaluation
for the values of x required to identify the solution. This yields the transformation of �0

into �1. Conversely, by simply inspecting the form of �0 in (5), one can see that each
|k〉K(|0〉X +|1〉X)(|0〉V −|1〉V) is the initial state of a bunch of histories as from the shortcut.
Quantum parallel computation is thus seen as the sum of the histories of a classical algorithm
that, given the advanced information, computes the missing information required to identify
the solution of the problem. The final rotation of the basis of register X serves to make the
information about the oracle’s choice—propagated to X with function evaluation—readable.

Summing up, Deutsch’s algorithm can be represented as a sum of the histories of the
related advanced information classical algorithm, with histories phases and final rotation of
the X basis that reconstruct the quantum algorithm. In this way mutual causality explains
the structure of the quantum algorithm.

Interestingly, we can also build the quantum algorithm out of the advanced information
classical algorithm. In fact history initial phases and final rotation of the X basis are defin-
able, independently of our a priori knowledge of the quantum algorithm, as follows.

Let us make a simplification: we still use a priori knowledge of the quantum algorithm
to set the amplitudes of the initial superposition in X equal to one another. Instead, we
take the generic initial state of V : α(|0〉V + |1〉V) + β(|0〉V − |1〉V). The initial amplitude
of histories starting with V in |0〉V is thus α + β , with V in |1〉V is α − β . Under α, the
computation performed by the advanced information classical algorithm gets lost in the
quantum translation, since the overall factorizable initial state is transformed into itself.
Under β , the transfer of information from classical to quantum algorithm is maximum and
the entanglement between registers K and X is maximized (it is also maximal in the present
case). We obtain the function evaluation stage of the quantum algorithm. One can readily
check that the same holds also if we set the amplitudes in the initial state of register X free.

Int J Theor Phys (2009) 48: 3383–3395 3389

As for the rotation of the X basis, let us first discuss the form of �1, the state after
function evaluation. With α = 0 and β = 1, function evaluation creates a maximal entan-
glement, two orthogonal states of K , |00〉K − |11〉K and |01〉K − |10〉K are correlated with
two orthogonal states of X. This means that register X contains the information that dis-
criminates between |00〉K − |11〉K and |01〉K − |10〉K (or between eiδ00 |00〉K − eiδ11 |11〉K
and eiδ01 |01〉K − eiδ10 |10〉K if the superposition in K is incoherent), namely between con-
stant and balanced functions. Therefore we should rotate the basis of X in such a way that
this information becomes readable: |0〉X + |1〉X should go into |0〉X , etc. We can define this
rotation (independently of our a priori knowledge of the quantum algorithm) by setting the
requirement that the entanglement between K and X (generated by function evaluation)
becomes correlation between the outcomes of measuring [K] and [X].

Summing up, in the case of Deutsch’s algorithm, the advanced information classical al-
gorithm defines the quantum algorithm provided that history phases maximize the entan-
glement generated by function evaluation and final rotation of the X basis transforms this
entanglement into correlation between measurement outcomes.

The fact that function evaluation generates the desired entanglement between the char-
acter of the function and the solution is not a necessity of course. It is Deutsch’s problem
that is designed around this fact. The problem could be different, for example distinguishing
between f00 and f01 on the one side and f10 and f11 on the other. The algorithm should
be correspondingly changed by left multiplying Hadamard on X by the appropriate per-
mutation of the basis vectors of X. However, we will see that the problems addressed by
the quantum algorithms are all designed to exploit the entanglement generated by function
evaluation with the slightest use of other operations.

4 Deutsch&Jozsa’s algorithm

The set of functions is the constant and balanced functions fk : {0,1}n → {0,1}; k ≡
k0, k1, . . . , k2n−1 is both table and suffix—table (9) for n = 2.

x f0000(x) f1111(x) f0011(x) f1100(x) f0101(x) f1010(x) f0110(x) f1001(x)

00 0 1 0 1 0 1 0 1
01 0 1 0 1 1 0 1 0
10 0 1 1 0 0 1 1 0
11 0 1 1 0 1 0 0 1

(9)
The oracle chooses a function. The problem is finding whether the function is balanced

or constant through function evaluation—see [7].
The black box, given k and x, computes f (k, x) = fk(x). The 2n qubit oracle’s choice

register K (just a conceptual reference) contains k. The algorithm is: (0) prepare K in the
superposition of all k, X in the superposition of all x, and V in the antisymmetric state, (1)
perform function evaluation, which changes the content of V from v to v ⊕ f (k, x), and (2)
apply Hadamard to register X:

�0 = 1

8
(|0000〉K + |1111〉K + |0011〉K + |1100〉K + · · ·)(|00〉X + |01〉X + |10〉X

+ |11〉X)(|0〉V − |1〉V). (10)

3390 Int J Theor Phys (2009) 48: 3383–3395

�1 = 1

8

[
(|0000〉K − |1111〉K)(|00〉X + |01〉X + |10〉X + |11〉X)

+ (|0011〉K − |1100〉K)(|00〉X + |01〉X − |10〉X − |11〉X) + · · ·
]

(|0〉V −|1〉V).

(11)

�2 = 1

4
[(|0000〉K −|1111〉K)|00〉X + (|0011〉K −|1100〉K)|10〉X +· · ·](|0〉V −|1〉V). (12)

Measuring [K] and [X] in (12) determines the oracle’s choice and the solution found by the
second player: all zeroes if constant, not so if balanced. Backdating the reduction on k gives
the original algorithm.

We check the 50% rule. There is advanced knowledge of any half k. We distinguish
between: (i) half tables that do not contain different values of the function and (ii) those
that do. In case (i), the solution is identified by computing an extra row, i.e. by perform-
ing one function evaluation for any value of x outside the advanced information (if the
value of the function is still the same, the function is constant, otherwise it is balanced).
In case (ii), we know already that the function is balanced and no function evaluation is
needed. Although some half k require one function evaluation and some none, the 50% rule
is satisfied. In fact the half k that already specify the solution, thus require no function eval-
uation, contain 100% of the information about the solution and should not be taken into
account.

The function evaluation stage of the quantum algorithm (the transformation of �0

into �1) is the sum of the histories of the advanced information classical algorithm as from
the “shortcut” highlighted for Deutsch’s algorithm.

We build the quantum algorithm out of the advanced information classical algorithm. As
for the choice of the history initial phases, this is justified as in Deutsch’s algorithm. As for
the rotation of the X basis, we examine the outcome of function evaluation, namely �1 (11).
There is maximal entanglement between K and X. Orthogonal states of K , discriminating
between constant and balanced functions, are correlated with orthogonal states of X. The
information whether the function is constant or balanced has propagated to register X. To
read this information, we rotate the X basis in such a way that (|0000〉K −|1111〉K)(|00〉X +
|01〉X + |10〉X + |11〉X) goes into (|0000〉K − |1111〉K)|00〉X , etc. This rotation of the basis
of X is such that the entanglement between K and X becomes correlation between the
outcomes of measuring [K] and [X]. This is a constructive definition of Hadamard on X.
This completes the derivation of the quantum algorithm from the advanced information
classical algorithm.

5 Bernstein&Vazirani’s Algorithm

The analysis of the previous section also applies to Bernstein&Vazirani’s algorithm, see [1],
which is a restriction of Deutsch&Jozsa’s algorithm. The set of the constant and balanced
functions is restricted to a proper subset thereof, namely to the set of the functions such that
fk(x) = a · x , with a · x = (

∑
i∈{0,1}n aixi)mod 2. The problem is to find the “hidden string”

a. The algorithm is Deutsch&Jozsa’s algorithm with the superposition hosted in register K

reduced to the new set of functions. Measuring [K] and [X] at the end of the algorithm
yields a value of k and the corresponding value of a. The discussion is the same as in the
former section.

Int J Theor Phys (2009) 48: 3383–3395 3391

6 Simon’s Algorithm

The set of functions is fk : {0,1}n → {0,1}n−1, such that fk(x) = fk(y) iff x = y or x =
y ⊕ h(k); h(k)≡ h

(k)

0 , h
(k)

1 , . . . , h
(k)

n−1 (depending on k) belongs to {0,1}n excluding the all
zeroes string; ⊕ denotes bitwise mod 2 addition. Table (13) gives the set for n = 2; k is both
table and suffix. Since h(k) ⊕ h(k) = 0, each value of the function appears exactly twice in
the table, thus 50% of the rows plus one surely identify h(k).

h(0011) = 01 h(1100) = 01 h(0101) = 10 h(1010) = 10 h(0110) = 11 h(1001) = 11

x f0011(x) f1100(x) f0101(x) f1010(x) f0110(x) f1001(x)

00 0 1 0 1 0 1
01 0 1 1 0 1 0
10 1 0 0 1 1 0
11 1 0 1 0 0 1

(13)
The oracle chooses a function. The problem is finding the value of h(k), “hidden” in the

fk(x) chosen by the oracle, through function evaluation, see [12]. The black box, given k
and x, computes f (k, x) = fk(x). The oracle’s choice register K is 2n(n − 1) qubit. The
algorithm is: (0) prepare K in the superposition of all k, X in the superposition of all x, and
V in the all zeroes string |0〉V , (1) perform function evaluation, which changes the content of
V from v to v ⊕ f (k, x), where ⊕ denotes bitwise mod 2 addition, and (2) apply Hadamard
to X:

�0 = 1

2
√

6
(|0011〉K + |1100〉K + |0101〉K + |1010〉K + · · ·)(|00〉X + |01〉X + |10〉X

+ |11〉X)|0〉V . (14)

�1 = 1

2
√

6

[
(|0011〉K + |1100〉K)[(|00〉X + |01〉X)|0〉V + (|10〉X + |11〉X)|1〉V]

+ (|0101〉K + |1010〉K)[(|00〉X + |10〉X)|0〉V + (|01〉X + |11〉X)|1〉V] + · · ·
]
.

(15)

�2 = 1

2
√

6

[
(|0011〉K + |1100〉K)[(|00〉X + |10〉X)|0〉V + (|00〉X − |10〉X)|1〉V]

+ (|0101〉K + |1010〉K)[(|00〉X + |01〉X)|0〉V + (|00〉X − |01〉X)|1〉V] + · · ·
]
.

(16)
In �2, for each value of the content of K and no matter the content of V , register X hosts

even weighted superpositions of the 2n−1 strings s(k)
j orthogonal to h(k). By measuring [K]

and [X] we obtain at random the oracle’s choice k and one of the s(k)
j .

We leave K in its after-measurement state, thus fixing k, and iterate the right part of the
algorithm (preparation of registers X and V , function evaluation, and measurement of [X])
until obtaining n − 1 different s(k)

j , which allows to find h(k) by solving the system of n − 1
mod 2 linear equations.

We check the 50% rule. We focus on the quantum part of Simon’s problem, namely on
the problem of generating at random a string s(k)

j orthogonal to h(k). Any s(k)
j is a “solution”

of this problem. This formulation of Simon’s problem and the usual formulation (finding
h(k)) are equivalent as far as an exponential speed up in the former implies an exponential
speed up in the latter and vice-versa. The information acquired by measuring [K] and [X] in
(16) is the information in K (the content of X—the string s(k)

j —is a function of the content
of K). Measuring [K] induces state reduction on k. There is advanced knowledge of any

3392 Int J Theor Phys (2009) 48: 3383–3395

half k. If the half table does not contain a same value of the function twice, the solution is
identified by performing one function evaluation for any value of x outside the advanced
information. The new value of the function is necessarily a value already present in the
advanced information, which identifies h(k) thus all the s(k)

j . If the half table contains a same
value of the function twice, this already identifies the solution and no function evaluation is
needed. This verifies the 50% rule.

One can see that the same discussion applies to the Generalized Simon’s algorithm, thus
to the Hidden Subgroup Algorithms, like finding the period of a function (the quantum part
of Shor’s factorization algorithm), etc.

The function evaluation stage of the quantum algorithm is the sum of the histories of the
advanced information classical algorithm—as from the shortcut highlighted for Deutsch’s
algorithm.

As for building the quantum algorithm out of the advanced information classical algo-
rithm, things are more difficult. In fact Simon’s algorithm is not optimal under the criteria
of maximizing entanglement. We show this for n = 2. We still choose even amplitudes for
the initial superposition in X, while letting V in the generic initial state α|0〉V + β|1〉V . As
readily checked, α = −β maximizes the entanglement between K and X after function eval-
uation. Hadamard on X transforms this entanglement into correlation between the outcomes
of measuring [K] and [X]. With V prepared in the antisymmetric state, state (16) becomes:

1

2
√

3
[(|0011〉K + |1100〉K)|10〉X + (|0101〉K + |1010〉K)|01〉X + · · ·](|0〉V − |1〉V).

Swapping the basis vectors |01〉X and |10〉X yields the desired correlation between k
and h(k). In terms of number of oracle’s queries, the optimal algorithm is more efficient
than the known algorithm. In fact it yields the hidden string h(k) (rather than a s(k)

j) with
a single oracle’s query, as expected since just one function evaluation identifies h(k). The
same holds for n > 2. We prepare each qubit of V in the antisymmetric state. The final rota-
tion of the X basis becomes Hadamard followed by a permutation of the basis vectors—in
general depending on k. However, identifying and implementing this permutation might be
costly. Simon’s algorithm is a suboptimal solution in terms of number of oracle’s queries,
however the poly(n) cost of solving the system of n − 1 linear equations does not frustrate
the exponential speed up. This might not be the case for the “optimal” algorithm.

7 Grover’s Algorithm

See Sect. 2 for n = 2. We check the 50% rule for n = 2. Mutual causality is between the two
bits of the outcome of measuring [K]. The quantum algorithm requires the number of func-
tion evaluations of a classical algorithm that knows in advance either k0 or k1. To identify the
missing bit, this algorithm should perform one function evaluation, as readily checked. This
verifies the 50% rule. As for n > 2, a classical algorithm that knows in advance 50% of the n

bits of the data base location, to identify the n/2 missing bits should perform O(2n/2) func-
tion evaluations, against the O(2n) of a classical algorithm without advanced information.
This verifies the 50% rule for n > 2.

As for representing the quantum algorithm as the sum of the histories of the advanced
information classical algorithm, still for n = 2, the procedure is the same as in the former
algorithms.

We build the quantum algorithm out of the advanced information classical algorithm—
still for n = 2 to start with. As for the history initial phases, their choice is justified as in

Int J Theor Phys (2009) 48: 3383–3395 3393

Deutsch’s algorithm. As for the final rotation of the X basis, we examine the outcome of
function evaluation, i.e. �1 (2). Registers K and X are maximally entangled, orthogonal
states of K , each corresponding to a value of k, are correlated with orthogonal states of
X, which means that the value of k has propagated to register X. To read this value, i.e. to
transform entanglement between K and X into correlation between the outputs of measuring
[K] and [X], we should rotate the X basis in such a way that −|00〉X + |01〉X + |10〉X +
|11〉X (correlated with |00〉K) goes into |00〉X , etc. This is a constructive definition of the
transformation U .

Generalizing to n > 2 is straightforward. Given the advanced knowledge of n/2 bits, in
order to compute the missing n/2 bits we should perform function evaluation and rotation
of the basis of X an O(2

n
2) times. Each time we obtain the superposition of an unentangled

state of the form (1) and a maximally entangled state of the form (3). At each successive
iteration, the amplitude of the latter state is amplified at the expense of the amplitude of the
former, until it becomes about 1 in O(2

n
2) iterations. The final measurement of [K] induces

state reduction on k. There is advanced knowledge of any half k.

8 Engineering Quantum Algorithms

The 50% rule and the sum of the histories make up a tool for searching quantum speed
ups. The rule, by comparing two classical algorithms (with and without advanced informa-
tion), allows to identify the problems solvable with a quantum speed up in terms of num-
ber of oracle’s queries. Once the problem is identified, the sum of the histories of the ad-
vanced information classical algorithm—with histories degrees of freedom set to maximize
entanglement/correlation—should yield the speed up in terms of number of queries. This
can also be an overall speed up, like in Deutsch’s, Deutsch&Jozsa’s, Bernstein&Vazirani’s,
and Grover’s algorithms. However, from a practical standpoint, the speed up in terms
of number of queries could be frustrated by the cost of setting the histories degrees of
freedom. One might have to compromise between the two things, like in Simon’s algo-
rithm.

We exemplify this methodology by building from scratch a quantum algorithm
(a variation of Deutsch’s algorithm). The oracle chooses a function out of the set fk :
{0,1} → {00,01,10}—table (17).

x f0000 f0001 f0100 f0101 f0010 f1000 f1010 f0110 f1010

0 00 00 01 01 00 10 10 01 10
1 00 01 00 01 10 00 10 10 10

(17)

The problem is whether the mod 2 addition of the four bits of k is 0 or 1. Given any half
table, the advanced information classical algorithm, in order to find the solution, should per-
form function evaluation for the other value of x. It is easy to derive the quantum algorithm
out of this classical algorithm. We need a 4 qubits oracle’s choice register K , a 1 qubit ora-
cle’s query register X, and a 2 qubits register V for the result of function evaluation (bitwise
mod 2 added to the former content of V for logical reversibility). Setting histories degrees
of freedom to maximize entanglement/correlation yields the algorithm: (0) prepare K in the
superposition of all k, X in the superposition of all x, each qubit of V in the antisymmetric
state, (1) perform function evaluation, and (2) apply Hadamard on X. The final measurement
of [K] and [X] yields the function chosen by the oracle in K and the solution in X.

3394 Int J Theor Phys (2009) 48: 3383–3395

Searching speed ups in terms of number of oracle’s queries with the 50% rule is straight-
forward. We outline another example. Let the set of functions be fk : {0,1}2 → {0,1}2 such
that the sequence of function values for increasing values of the argument is a permutation
of the values of the argument (there are 4! such functions). Given a black box that computes
the function, the problem is to find some character of the permutation. A classical algorithm
with advanced information, to identify the function requires one function evaluation, with-
out advanced information it requires three function evaluations. Thus there is room for a
speed up in terms of number of oracle’s queries. Going to the quantum algorithm, register
K is 8 qubits (the sequence of four fields of two qubits, each containing a value of the func-
tion), registers X is two qubits, enough to specify a four valued character of the function,
and register V is 2 qubits. For example, we can prepare the two qubits V0 and V1 of register
V in the antisymmetric state, so that function character, after function evaluation, is encoded
in the phases of the superposition hosted in register X. The preparation is thus

1

8
√

6
(|00 01 10 11〉K + |00 01 11 10〉K . . .)(|00〉X + |01〉X + |10〉X + |11〉X)(|0〉V0 − |1〉V0)

× (|0〉V1 − |1〉V1).

We can hope that function evaluation yields four orthogonal vectors of the Hilbert space
of register K correlated with four orthogonal vectors of X. If this is the case, we should
investigate which character of the function is discriminated by the four orthogonal vectors
of X, and design around it the problem addressed by the quantum algorithm. Then we should
identify the final rotation of the X basis that allows to read such a character. Clearly, all this
is tentative, and one should play with things. For example, with a three valued character
of the permutation, namely dividing the 24 functions in 3 partitions of 8, just one function
evaluation (against three classically) followed by Hadamard on X and measurement of [X],
tells which partition the function belongs to.

With the 50% rule, one can figure out any number of these “potential speed up” situations.
This should give a playground both for searching new quantum speed ups and for developing
quantum algorithm engineering.

9 Conclusions

Summing up, the points in favour of the 50% rule are: (i) the rule is self evident, it is an
immediate consequence of postulating the symmetry of mutual causality (like between two
polarizations measured in an entangled polarization state) in a more complete representation
of the quantum algorithms, (ii) the rule is verified by the main quantum algorithms, and
(iii) the rule explains the structure of these algorithms—which are in fact representable as a
sum of the histories of the respective advanced information classical algorithm.

The 50% rule and the sum of the histories picture make up a tool for the search of quan-
tum speed ups, as discussed in the previous section. This should be interesting in a situation
where finding a speed up was, so to speak, a matter of art and no further speed ups of prac-
tical interest have been discovered since 1996. Using this tool for a systematic search of
the speed ups should also foster the quantum algorithms engineering outlined in this pa-
per.

Because of its peculiar character, the present explanation of the speed up could have
an epistemological and interdisciplinary interest. It questions the mechanistic vision of
evolutions where causality propagates locally through an instantaneous present (the dt of

Int J Theor Phys (2009) 48: 3383–3395 3395

Schrödinger equation). Quantum algorithms are partly driven by their future outcome and,
in some sense, “exist” (host mutual causality) in an extended present comprising prepara-
tion, unitary evolution, and measurement. Under the perspective of the 50% rule, quantum
computation turns out to be the first formalized example of teleological evolution. This
might shed light on quantum and teleological explanations of organic behavior.

Acknowledgements The author thanks for useful comments/suggestions his wife Ferdinanda Pavia and:
Scott Aaronson, Pablo Arrighi, Vint Cerf, Artur Ekert, David Finkelstein, Shlomit Finkelstein, Hartmut
Neven, and Charles Stromeyer.

References

1. Bernstein, E., Vazirani, U.: In: Proceedings of the 25th Annual ACM Symposium on the Theory of
Computing, p. 11, 1993

2. Castagnoli, G., Finkelstein, D.: Theory of the quantum speed up. Proc. R. Soc. Lond. A 457, 1799 (2001).
arXiv:quant-ph/0010081v1

3. Castagnoli, G.: The mechanism of quantum computation. Int. J. Theor. Phys. 47(8), 2181 (2008)
4. Castagnoli, G.: The quantum speed up as advanced cognition of the solution. Int. J. Theor. Phys. 48(3),

857 (2009)
5. Castagnoli, G.: The 50% advanced information rule of the quantum algorithms. Int. J. Theor. Phys.

(2009, to be published)
6. Deutsch, D.: Quantum theory, the Church-Turing principle, and the universal quantum computer. Proc.

R. Soc. (Lond.) A 400, 97 (1985)
7. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. (Lond.) A

439, 553 (1992)
8. Dolev, S., Elitzur, A.C.: Non-Sequential Behavior of the Wave Function. (2005). arXiv:quant-ph/

0102109v1
9. Gross, D., Flammia, S.T., Eisert, X.: J. Phys. Rev. Lett. 102(19) (2009)

10. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc. 28th Ann. ACM Symp.
Theory of Computing, 1996

11. Grover, L.K.: From Schrödinger equation to quantum search algorithm. (2001).
arXiv:quant-ph/0109116

12. Simon, D.: On the power of quantum computation. In: Proc. 35th Ann. Symp. on Foundations of Comp.
Sci., p. 116, 1994

http://arxiv.org/abs/arXiv:quant-ph/0010081v1
http://arxiv.org/abs/arXiv:quant-ph/0102109v1
http://arxiv.org/abs/arXiv:quant-ph/0102109v1
http://arxiv.org/abs/arXiv:quant-ph/0109116

	Quantum Algorithms Know in Advance 50% of the Solution They Will Find in the Future
	Abstract
	Introduction
	Advanced Knowledge
	Deutsch's Algorithm
	Deutsch&Jozsa's algorithm
	Bernstein&Vazirani's Algorithm
	Simon's Algorithm
	Grover's Algorithm
	Engineering Quantum Algorithms
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

